Выхлопная система киа рио 3 схема

Добавил пользователь Владимир З.
Обновлено: 05.10.2024

Моменты затяжки см. тут
Необходимый инструмент: торцовая головка «на 19», отвертка с плоским лезвием.

1. Открутите две крепежные гайки дополнительных нейтрализатора и глушителя к основному глушителю.


2. . и отсоедините от них основной глушитель.


3. Снимите со шпилек прокладку.


4. Поддев отверткой, отсоедините переднюю подушку от кронштейна основного глушителя.


5. Так же отсоедините заднюю подушку от кронштейна основного глушителя


6. Снимите основной глушитель с автомобиля.

Информация актуальна для автомобилей КИА Рио 3 2011, 2012, 2013, 2014, 2015, 2016, 2017 года выпуска, с кузовом седан, с бензиновыми двигателями объемом 1.4 л (107 л.с), 1.6 л (123 л.с.). Для иных вариантов двигателя инструкция может отличаться.
Источник: KIA Rio III: Руководство по эксплуатации, техническому обслуживанию и ремонту. - М.: ООО «ИДТР», 2012. -320 с: ил. + эл. схемы


Думаю уже не для кого не секрет, что наши машинки оснащены катализатором, который в свою очередь не самый надежный элемент в авто.Откровенно говоря многие тупо ждут его кончины из-за того что его замена далеко не дешевая, а с нашим бензином у многих уже до 50к он успевает осыпаться или забиться, многие меняют его еще в рабочем состояни из-за того, что катализатор может осыпаться внезапно и повредить двигатель.
Пути решения этой преблемы не мало.
1 Самая простая — замена на оригинал


оригинальный катализатор киа рио

Я отброшу ее потому, что стоит эта удовольствие около 25к +( поправте ели, что то путаю)
Заменть кат по гарантии не получится, так как гарантия на него около 3 к не помню точно, но до 5 к.
2 Второй способ и наверное самый распостраненый у риоводов, это вырезать кат, втавить пламя гаситель и поставить обманку .Далее естественно необходим чип, который избавит вам от незбежно вылетающей ошибки.
По отзывам ребят после этой процедуры поведение машины не меняется


3 Третий способ это замена на "вставки" выпускают их не мало фирм


аля паук 4-1 естественно длину труб не кто не расчитывал поэтому назвать это пауком нельзя и пришлось обозвать ее -вставкой)


втавка типа паук 4-2-1

Настройка выхлопной системы.
КАКИМ ОБРАЗОМ ДВИГАТЕЛЬ БЛАГОДАРЯ НАСТРОЙКЕ ВЫПУСКНОЙ СИСТЕМЫ МОЖЕТ ПОЛУЧИТЬ ДОПОЛНИТЕЛЬНУЮ МОЩНОСТЬ?

Как мы уже уяснили, коэффициент наполнения, вращающий момент и мощность зависят от перепада давления между впускным и выпускным коллекторами в фазе продувки. Выпускную систему можно построить таким образом, что распространяющиеся в трубах ударные волны, отражаясь от различных элементов системы, будут возвращаться к выпускному клапану в виде скачка давления или разрежения. Откуда же появится разрежение, спросите вы. Ведь в трубу мы всегда только нагнетаем и никогда не отсасываем. Дело в том, что в силу инерции газов за скачком давления всегда следует фронт разрежения. Именно фронт разрежения интересует нас больше всего. Нужно только сделать так, чтобы он был в нужном месте в нужное время. Место нам уже хорошо известно. Это выпускной клапан. А время нужно уточнить. Дело в том, что время действия фронта весьма незначительное. А время открытия выпускного клапана, когда фронт разрежения может создать полезную для нас работу, сильно зависит от скорости вращения двигателя. Да и весь период фазы выпуска нужно разбить на две составляющие. Первая — когда клапан только что открылся. Эта часть характеризуется большим перепадом давления и активным истечением газов в выпускной коллектор. Отработанные газы и без посторонней помощи после рабочего хода покидают цилиндр. Если в этот момент волна разрежения достигнет выпускного клапана, маловероятно, что она сможет повлиять на процесс очистки. А вот конец выпуска более интересен. Давление в цилиндре уже упало почти до атмосферного. Поршень находится около ВМТ, значит, объем над поршнем минимален. Да еще впускной клапан уже приоткрыт. Помните? Такое состояние (фаза перекрытия) характеризуется тем, что впускной коллектор через камеру сгорания сообщается с выпускным. Вот теперь, если фронт разрежения достигнет выпускного клапана, мы сможем существенно улучшить коэффициент наполнения, так как даже за короткое время действия фронта удастся продуть маленький объем камеры сгорания и создать разрежение, которое поможет разгону топливовоздушной смеси в канале впускного коллектора. А если представить себе, что как только все отработанные газы покинут цилиндр, а разрежение достигнет своего максимального значения, выпускной клапан закроется, мы сможем в фазе впуска получить заряд больший, чем если бы очистили цилиндр только до атмосферного давления. Этот процесс дозарядки цилиндров с помощью ударных волн в выпускных трубах может позволить получить высокий коэффициент наполнения и, как следствие, дополнительную мощность. Результат его действия примерно такой, как если бы мы нагнетали давление во впускном коллекторе с помощью компрессора. В конце концов, какая разница, каким образом создан перепад давления, заталкивающий свежую смесь в камеру сгорания, с помощью нагнетания со стороны впуска или разрежения в цилиндре?

Такой вот процесс может вполне происходить в выпускной системе ДВС. Осталась сущая мелочь. Нужно такой процесс организовать.

Первым необходимым условием дозарядки цилиндров с помощью ударных волн надо назвать существование достаточно широкой фазы перекрытия. Строго говоря, нас интересует не столько сама ширина фазы как геометрическая величина, сколько интервал времени, когда оба клапана открыты. Без особых разъяснений понятно, что при постоянной фазе с увеличением скорости вращения время уменьшается. Из этого автоматически следует, что при настройке выпускной системы на определенные обороты одним из варьируемых параметров будет ширина фазы перекрытия. Чем выше обороты настройки, тем шире нужна фаза. Из практики можно сказать, что фаза перекрытия менее 70 градусов не позволит иметь заметный эффект, а значение для настроенных на обычные 6000 об/мин систем составляет 80 — 90 градусов.

Второе условие уже определили. Это необходимость вернуть к выпускному клапану ударную волну. Причем в многоцилиндровых двигателях вовсе необязательно возвращать ее в тот цилиндр, который ее сгенерировал. Более того, выгодно возвращать ее, а точнее, использовать в следующем по порядку работы цилиндре. Дело в том, что скорость распространения ударных волн в выпускных трубах — есть скорость звука. Для того чтобы возвратить ударную волну к выпускному клапану того же цилиндра, предположим, на скорости вращения 6000 об/мин, надо расположить отражатель на расстоянии примерно 3,3 метра. Путь, который пройдет ударная волна за время двух оборотов коленчатого вала при этой частоте, составляет 6,6 метра. Это путь до отражателя и обратно. Отражателем может служить, например, резкое многократное увеличение площади трубы. Лучший вариант — срез трубы в атмосферу. Или, наоборот, уменьшение сечения в виде конуса, сопла Лаваля или, совсем грубо, в виде шайбы. Однако мы договорились, что различные элементы, уменьшающие сечение, нам неинтересны. Таким образом, настроенная на 6000 об/мин выпускная система предполагаемой конструкции для, например, четырехцилиндрового двигателя будет выглядеть как четыре трубы, отходящие от выпускных окон каждого цилиндра, желательно прямые, длиной 3,3 метра каждая. У такой конструкции есть целый ряд существенных недостатков. Во-первых, маловероятно, что под кузовом, например, Гольфа длиной 4 метра или даже Ауди А6 длиной 4,8 метра возможно разместить такую систему. Опять же, глушитель все-таки нужен. Тогда мы должны концы четырех труб ввести в банку достаточно большого объема, с близкими к открытой атмосфере акустическими характеристиками. Из этой банки надо вывести газоотводную трубу, которую необходимо оснастить глушителем.
Короче, такого типа система для автомобиля не подходит. Хотя справедливости ради надо сказать, что на двухтактных четырехцилиндровых мотоциклетных моторах для кольцевых гонок она применяется. Для двухтактного мотора, работающего на частоте выше 12 000 об/мин, длина труб сокращается более чем в четыре раза и составляет примерно 0,7 метра, что вполне разумно даже для мотоцикла. Вернемся к нашим автомобильным двигателям. Сократить геометрические размеры выпускной системы, настроенной на те же 6000 об/мин, вполне можно, если мы будем использовать ударную волну следующим по порядку работы цилиндром. Фаза выпуска в нем наступит для трехцилиндрового мотора через 240 градусов поворота коленчатого вала, для четырехцилиндрового — через 180 градусов, для шестицилиндрового — через 120 и для восьмицилиндрового — через 90. Соответственно, интервал времени, а следовательно, и длина отводящей от выпускного окна трубы пропорционально уменьшается и для, например, четырехцилиндрового двигателя сократится в четыре раза, что составит 0,82 метра. Стандартное в таком случае решение — всем известный и желанный "паук". Конструкция его проста. Четыре так называемые первичные трубы, отводящие газы от цилиндров, плавно изгибаясь и приближаясь друг к другу под небольшим углом, соединяются в одну вторичную трубу, имеющую площадь сечения в два-три раза больше, чем одна первичная. Длина от выпускных клапанов до места соединения нам уже известна — для 6000 об/мин примерно 820 мм. Работа такого "паука" состоит в том, что следующий за ударной волной скачок разрежения, достигая места соединения всех труб, начинает распространяться в обратном направлении в остальные три трубы. В следующем по порядку работы цилиндре в фазе выпуска скачок разрежения выполнит нужную для нас работу.

Тут надо сказать, что существенное влияние на работу выпускной системы оказывает также длина вторичной трубы. Если конец вторичной трубы выпущен в атмосферу, то импульсы атмосферного давления будут распространяться во вторичной трубе навстречу импульсам, сгенерированным двигателем. Суть настройки длины вторичной трубы состоит в том, чтобы избежать одновременного появления в месте соединения труб импульса разрежения и обратного импульса атмосферного давления. На практике длина вторичной трубы слегка отличается от длины первичных труб. Для систем, которые будут иметь дальше глушитель, на конце вторичной трубы необходимо разместить максимального объема и максимальной площади сечения банку с поглощающим покрытием внутри. Эта банка должна как можно лучше воспроизводить акустические характеристики бесконечной величины воздушного пространства. Следующие за этой банкой элементы выпускной системы, т.е. трубы и глушители, не оказывают никакого воздействия на резонансные свойства выпускной системы. Их конструкцию, влияние на сопротивление потоку, на уровень и тембр шума мы уже обсудили. Чем ниже избыточное давление они обеспечат, тем лучше.

Итак, мы уже рассмотрели два варианта построения настроенной на определенные обороты выпускной системы, которая за счет дозарядки цилиндров на оборотах резонанса увеличивает вращающий момент. Это четыре отдельные для каждого цилиндра трубы и так называемый "паук" "четыре в один". Следует также упомянуть о варианте "два в один — два в один" или "два Y", который наиболее часто встречается в тюнинговых автомобилях, так как легко компонуется в стандартные кузова и не слишком сильно отличается по размерам и форме от стандартного выпуска. Устроен он достаточно просто. Сначала трубы соединяются попарно от первого и четвертого цилиндров в одну и второго и третьего в одну как цилиндров, равноотстоящих друг от друга на 180 градусов по коленчатому валу. Две образовавшиеся трубы также соединяются в одну на расстоянии, соответствующем частоте резонанса. Расстояние измеряется от клапана по средней линии трубы. Попарно соединяющиеся первичные трубы должны соединяться на расстоянии, составляющем треть общей длины. Один из часто встречающихся вопросов, на которые приходится отвечать, это какой "паук" предпочесть. Сразу скажу, что ответить на этот вопрос однозначно нельзя. В некоторых случаях стандартный выпускной коллектор со стандартной приемной трубой работает абсолютно так же. Однако сравнить упомянутые три конструкции, несомненно, можно.

Тут надо обратиться к такому понятию, как добротность. Постольку, поскольку настроенный выпуск суть есть колебательная система, резонансные свойства которой мы используем, то понятно, что ее количественная характеристика — добротность — вполне может быть разной. Она действительно разная. Добротность показывает, во сколько раз амплитуда колебаний на частоте настройки больше, чем вдали от нее. Чем она выше, тем больший перепад давления мы можем использовать, тем лучше наполним цилиндры и, соответственно, получим прибавку момента. Так как добротность — энергетическая характеристика, то она неразрывно связана с шириной резонансной зоны. Не вдаваясь в подробности, можно сказать, что если мы получим большой выигрыш по моменту, то только в узком диапазоне оборотов для высокодобротной системы. И наоборот, если диапазон оборотов, в котором достигается улучшение, велик, то по величине выигрыш незначительный, это низкодобротная система.

Первый. Так как вращающий момент пропорционален перепаду давления, то наибольший прирост даст высокодобротная система номер один. Однако в узком диапазоне оборотов. Настроенный двигатель с такой системой будет иметь ярко выраженный "подхват" в зоне резонанса. И совершенно никакой на других оборотах. Так называемый однорежимный или "самолетный" мотор. Такой двигатель, скорее всего, потребует многоступенчатую трансмиссию. Реально такие системы в автомобилях не применяются. Система второго типа имеет более "сглаженный" характер, используется в основном для кольцевых гонок. Рабочий диапазон оборотов гораздо шире, провалы меньше. Но и прирост момента меньше. Таким образом настроенный двигатель тоже не подарок, об эластичности и мечтать не приходится. Однако если главное — высокая скорость при движении, то под такой режим будет подстроена и трансмиссия, и пилот освоит способы управления. Система третьего типа еще ровнее. Диапазон рабочих оборотов достаточно широкий. Плата за такую покладистость — еще меньшая добавка момента, которую можно получить при правильной настройке. Такие системы используются для ралли, в тюнинге для дорожных автомобилей. То есть для тех автомобилей, которые ездят с частой сменой режимов движения. Для которых важен ровный вращающий момент в широком диапазоне оборотов.

Второй. Как всегда, бесплатных пряников не бывает. На вдвое меньших от резонансной частоты оборотах фаза отраженной волны повернется на 180 градусов, и вместо скачка разрежения в фазе перекрытия к выпускному клапану будет приходить волна давления, которая будет препятствовать продувке, то есть сделает желаемую работу наоборот. В результате на вдвое меньших оборотах будет провал момента, причем чем большую добавку мы получим вверху, тем больше потеряем внизу. И никакими настройками системы управления двигателем невозможно скомпенсировать эту потерю. Останется только мириться с этим фактом и эксплуатировать мотор в том диапазоне, который можно признать

Однако человечество придумало несколько способов борьбы с этим явлением. Один из них — электронноуправляемые заслонки около выходных отверстий в головке. Суть их работы состоит в том, что на низкой кратной частоте заслонка перегораживает частично выхлопной канал, препятствуя распространению ударных волн и тем самым разрушая ставший вредоносным резонанс. Выражаясь более точно, во много раз уменьшая добротность. Уменьшение сечения из-за прикрытых заслонок на низких оборотах не столь важно, так как генерируется небольшое количество выхлопных газов. Второй способ — применение так называемых коллекторов "A.R.". Их работа состоит в том, что они оказывают небольшое сопротивление потоку, когда давление в коллекторе меньше, чем у клапана, и увеличивают сопротивление, когда ситуация обратная. Третий способ — несовпадение отверстий в головке и коллекторе. Отверстие в коллекторе большего размера, чем в головке, совпадающее по верхней кромке с отверстием в головке и не совпадающее примерно на 1 — 2 мм по нижней. Суть та же, что и в случае с "A.R." конусом. Из головки в трубу — "по шерсти", обратно — "против шерсти". Два последних варианта нельзя считать исчерпывающими ввиду того, что "по шерсти" все-таки несколько хуже, чем гладкие трубы. В качестве лирического отступления могу сказать, что несовпадение отверстий — стандартное простое решение для многих серийных моторов, которое почему-то многие "тюнингаторы" считают дефектом поточного производства.

Третий. Следствие второго. Если мы настроим выпускную систему на резонансную частоту, например 4000 об/ мин, то на 8000 об/мин получим вышеописанный "провал", если на этих оборотах система окажется работоспособной.
Немаловажный аспект при рассмотрении работы настроенного выпуска — это требования к его конструкции с точки зрения акустических свойств. Первое и самое важное — в системе не должно быть других отражающих элементов, которые породят дополнительные резонансные частоты, рассеивающие энергию ударной волны по спектру. Это значит, что внутри труб должны отсутствовать резкие изменения площади сечения, выступающие внутрь углы и элементы соединения. Радиусы изгиба должны быть настолько большими, насколько позволяет компоновка мотора в автомобиле. Все расстояния по средней линии трубы от клапана до места соединения должны быть по возможности одинаковыми.

Второе важное обстоятельство состоит в том, что ударная волна несет в себе энергию. Чем выше энергия, тем большую полезную работу мы можем от нее получить. Мерой энергии газа является температура. Поэтому все трубы до места их соединения лучше теплоизолировать. Обычно трубы обматывают теплостойким, как правило, асбестовым материалом и закрепляют его на трубе с помощью бандажей или стальной проволоки.

ДЛЯ ТЕХ КОМУ ЛЕНЬ ЧИТАТЬ СТАТЬЮ
В общем замена ката на паук дает нам не только более сводный выход газов (как принято говорить дыхание), но и эффект разряжености при впрыске ГС, за счет ударных волн в выхлопной системе.Тоесть более ПОЛНОЕ наполнение камеры а отсюда и прирост мощей!
В ощем на словах все очень просто и эффективно, но на деле пауки бывают разные 4-1 это когда от 4 цилиндров выхлопные трубки соединяются в одну на лпределенном расстонии, производят определеные ударные волны( они есть в любой машине-не пугайтесь) те в свою очередь эффект разряжености в цилиндре и соответственно более полное наполнение смесью, но работает паук 4-1 в на определеных обортах.
Паук 4-2-1 это когда из 4 цилиндров трубки попарно с перва обединяюся в 2 а потом в одну.

Настрока длины и толщины труб дело не простое, а без настройки паук превращается в обычную вставку))

Спасибо за внимание))жду ваших советов и предложений по этому поводу


На входе в каталитический нейтрализатор установлен управляющий датчик концентрации кислорода.


Второй, диагностический датчик концентрации кислорода установлен на сильфоне.


Все фланцевые соединения труб системы выпуска отработавших газов уплотнены металлоармированными прокладками.


Элементы системы подвешены к кузову на четырех резиновых подушках. Все они различаются по форме и цвету.

Для защиты от нагрева двигателя и узлов в моторном отсеке катколлекторзакрыт стальным термоэкраном.

Система выпуска отработавших газов автомобиля KIA Rio не требует специального обслуживания. Достаточно периодически проверять надежность затяжки резьбовых соединений и целость подушек подвески.

ПОЛЕЗНЫЙ СОВЕТ:

Периодически проверяйте систему выпуска отработавших газов. При повышенном уровне шума от системы выпуска проверьте ее герметичность. Для этого пустите двигатель и осмотрите всю систему. Проведите рукой над местами возможной утечки, не касаясь узлов, и вы сразу ощутите утечку газов. При необходимости замените проржавевшие и прогоревшие узлы.

ПРЕДУПРЕЖДЕНИЯ:

Перед ремонтом системы выпуска отработавших газов дайте ей остыть, так как во время работы двигателя она нагревается до высокой температуры.

Отработавшие газы ядовиты, отравление ими происходит незаметно, поэтому перед пуском двигателя в гараже обязательно откройте ворота!

Выхлопная система автомобиля: устройство и функции

Без выхлопной системы автомобиля отработанные выхлопные газы скапливались бы под капотом автомобиля, а возможно и попадали в салон. К тому же звук работающего двигателя без выхлопной системы вызывает скорее дискомфорт, чем восхищение.

Устройство

Выхлопная система автомобиля

Для удаления отработанных газов от двигателя внутреннего сгорания используется выхлопная система автомобиля. Она состоит из выпускного коллектора, кислородного датчика, приемной трубы, резонатора, выхлопного тракта, катализатора, глушителя. В старых автомобилях катализатор мог отсутствовать. Его и сейчас иногда специально вырезают, чтобы не менять часто из-за плохого бензина.

Выпускной коллектор соединяется непосредственно с двигателем автомобиля. Он объединяет все выводы от цилиндров в один.

Кислородный датчик устанавливается в выпускном коллекторе. Его чувствительная часть должна соприкасаться с выпускными газами. Он предназначен для управления топливной смесью.

Приемная труба является соединительным элементом между выпускным коллектором и остальными частями выхлопной системы.

Резонатор гасит пламя, которое вырывается при неполном сгорании топливной смеси в цилиндрах двигателя внутреннего сгорания.

Катализатор предназначен для фильтрации вредных веществ. Его наличие обязательно и регламентируется стандартом ЕВРО-3,4.

Глушитель

Глушитель имеет многостенную структуру и специальное шумопоглащающее наполнение. Его предназначение, как нетрудно догадаться из названия, это снижение уровня шума.

Выхлопной тракт представляет собой соединительную трубу, объединяющие различные части выхлопной системы для автомобилей.

Кроме вышеупомянутых частей устройство выхлопной системы может включать и другие элементы. Очень часто систему отвода отработанных газов дополняют различными гофрами, что позволяет снизить уровень вибрации.

Поломки выхлопной системы

  • Уменьшение мощности мотора;
  • Нестабильные обороты двигателя;
  • Попадание в салон выхлопных газов;
  • Появление копоти над глушителем.

К счастью устройство выхлопной системы позволяет заменить только вышедшую из строя деталь. Это позволяет значительно сэкономить, ведь ремонтировать поломку стоит сразу, иначе это может обернуться гораздо более серьезным ремонтом.

Самой частой причиной поломки выхлопной системы является прогорание швов или элементов системы. Иногда такую проблему можно устранить при помощи сварки, но длительность такого ремонта невелика и рано или поздно вам придется заменить поврежденную деталь. Второй причиной поломки является скопление реагентов и солей, а также различных химических соединений. В совокупность с резкими перепадами температур это и является причиной поломок функциональных частей системы выпуска. В особенности подвержен такому воздействию резонатор.

Самостоятельный ремонт выхлопной системы

Ремонт выхлопной системы

Очень часто простая поломка глушителя не позволяет вам продолжить движение и даже добраться до сервиса становиться проблематично. Это бывает при обрыве зацепов, креплений или при разрыве соединительной трубы. Тогда схема выхлопной системы разделяется, и передвигаться на таком автомобиле уже невозможно. Просто обрыв креплений или резинок можно отремонтировать при помощи толстой проволоки. Закрепив глушитель, вы сможете медленно продолжить движение. При разрыве соединительной трубы вам поможет гофра или широкий соединительный хомут. Соедините две части между собой и закрепите.

Конечно, родной звук это не вернет, но вы сможете продолжить ехать на автомобиле. Разрыв трубы можно качественно заварить, но место сварки, как правило, снова приходит в негодность под действием высокой температуры и вредных факторов, поэтому при первом громком звуке стоит задуматься о замене глушителя. Появление дыры в резонаторе не мешает вам ехать дальше, но говорит о том, что его необходимо срочно заменить.

Выбор запчастей

Выпускная система автомобиля – это та часть, на которой можно немного сэкономить, установив аналог, но поступать так стоит в крайнем случае. Не оригинальные глушитель и резонатор могут не давать достаточный отвод выхлопных газов. Как результат ваш мотор не сможет выдавать полную мощность, и увеличится износ деталей. Всегда стоит менять только на оригинальные запчасти или выбирать наиболее качественные аналоги.

Вопрос выбора запчастей для выхлопной системы стоит и при тюнинге автомобиля. Самое первое, с чего многие начинают, это замена системы выпуска, установки прямоточного глушителя и более широкой выпускной трубы. В такой системе также может полностью отсутствовать резонатор. При выборе таких деталей стоит учитывать, что ваш автомобиль станет звучать по-другому, и вы можете получить предписание за внесение изменений в конструкцию автомобиля. Лучше все-таки избежать переделки выхлопной системы для автомобиля.

Читайте также: